
A Bhatnagar–Gross–Krook-like Model Kinetic Equation for
a Granular Gas of Inelastic Rough Hard Spheres

Andrés Santos

Departamento de Física, Universidad de Extremadura, E-06071 Badajoz, Spain

Abstract. The Boltzmann collision operator for a dilute granular gas of inelastic rough hard spheres is much more intricate
than its counterpart for inelastic smooth spheres. Now the one-body distribution function depends not only on the translational
velocity v of the center of mass but also on the angular velocity ωωω of the particle. Moreover, the collision rules couple v
and ωωω , involving not only the coefficient of normal restitution α but also the coefficient of tangential restitution β . The
aim of this paper is to propose an extension to inelastic rough particles of a Bhatnagar–Gross–Krook-like kinetic model
previously proposed for inelastic smooth particles. The Boltzmann collision operator is replaced by the sum of three terms
representing: (i) the relaxation to a two-temperature local equilibrium distribution, (ii) the action of a nonconservative drag
force F proportional to v−u (u being the flow velocity), and (iii) the action of a nonconservative torque M equal to a linear
combination of ωωω and ΩΩΩ (ΩΩΩ being the mean angular velocity). The three coefficients in F and M are fixed to reproduce the
Boltzmann collisional rates of change of ΩΩΩ and of the two granular temperatures (translational and rotational). A simpler
version of the model is also constructed in the form of two coupled kinetic equations for the translational and rotational
velocity distributions. The kinetic model is applied to the simple shear flow steady state and the combined influence of α and
β on the shear and normal stresses and on the translational velocity distribution function is analyzed.
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INTRODUCTION AND MOTIVATION

As is well known, the master equation for the dynamics of an ordinary gas in the rarefied regime is the Boltzmann
equation [1]. In the particular case of hard spheres, it reads

∂t f (r,v; t)+v ·∇ f (r,v; t) = Jel[v| f (r, ·; t), f (r, ·; t)], (1)

where f (r,v; t) is the one-particle velocity distribution function and

Jel [v1| f (r, ·; t), f (r, ·; t)] = σ 2
∫

dv2

∫
dσ̂σσ Θ

(
g · σ̂σσ)(

g · σ̂σσ)[
f (r,v′′1 ; t) f (r,v′′2 ; t)− f (r,v1; t) f (r,v2; t)

]
(2)

is the Boltzmann collision operator. Here, σ is the diameter of a sphere, Θ(x) is Heaviside’s step function, σ̂σσ is a unit
vector directed along the centers of the two colliding particles, g = v1 − v2 is the relative velocity, and the double
primes on the velocities denote the initial values {v′′1 ,v

′′
2} that lead to {v1,v2} following an elastic binary collision:

v′′1 = v1 − (σ̂σσ ·g)σ̂σσ , v′′2 = v2 +(σ̂σσ ·g)σ̂σσ . (3)

The basic properties of the Boltzmann collision operator are
∫

dvJel[v| f , f ] = 0,
∫

dvvJel[v| f , f ] = 0, (4)

∫
dvv2Jel[v| f , f ] = 0, (5)

Jel[v| f0, f0] = 0 ⇔ f0(v) = n
( m

2πT

)3/2
exp

(
−mV 2

2T

)
, (6)

where V ≡ v−u is the peculiar velocity. Henceforth, for the sake of notation simplicity, the arguments r and t will
be implicitly understood and generally omitted. Equations (4) and (5) express the collisional conservation of mass,



momentum, and energy, while Eq. (6) indicates that collisions do not change the local equilibrium distribution function.
In the latter quantity, m is the mass of a particle and n =

∫
dv f (v), u = n−1 ∫ dvv f (v), and T = (m/3n)

∫
dvV 2 f (v)

are the local number density, flow velocity, and temperature, respectively. Note that, as usually done in the literature on
granular gases, the Boltzmann constant has been absorbed in the definition of temperature, so that the latter quantity
has dimensions of energy.

The mathematical intricacy of the Boltzmann operator (2) makes it difficult to get explicit nonequilibrium solutions
of Eq. (1), especially beyond the scope of the Chapman–Enskog method. This has motivated the proposal of simplified
model kinetic equations [1] where Jel[v| f , f ] is replaced by a more tractable term Kel[v| f ] that preserves Eqs. (4)–(6).
The simplest and most celebrated of these model kinetic equations is perhaps the one proposed in 1954 by Bhatnagar,
Gross, and Krook (BGK) and, independently, by Welander [2]. It consists of the replacement

Jel[v| f , f ]→ Kel[v| f ] =−ν [ f (v)− f0(v)] , ν =
16
5

σ2n
√

πT/m, (7)

where ν(r, t) is an effective velocity-independent collision frequency. Its expression is not fixed by Eqs. (4)–(6)
and thus it can be freely chosen to optimize further agreement with the original Boltzmann equation. The explicit
expression in Eq. (7) guarantees that the Navier–Stokes shear viscosity obtained from the BGK model coincides with
that obtained from the Boltzmann equation in the first Sonine approximation [1]. The BGK kinetic model has proven
to be much more reliable than its formulation might anticipate, even in far from equilibrium states [3].

Needless to say, the complexity of the Boltzmann equation increases when it describes a granular gas made of
inelastic hard spheres [4]. In that case, the Boltzmann collision operator is given by

Jinel [v1| f , f ] = σ2
∫

dv2

∫
dσ̂σσ Θ

(
g · σ̂σσ)(

g · σ̂σσ)[
α−2 f (v′′1) f (v′′2)− f (v1) f (v2)

]
, (8)

where α < 1 is the coefficient of normal restitution (here assumed to be constant) and Eq. (3) must be replaced by

v′′1 = v1 − 1+α−1

2
(σ̂σσ ·g)σ̂σσ , v′′2 = v2 +

1+α−1

2
(σ̂σσ ·g)σ̂σσ . (9)

Mass and momentum are still conserved, so that Eq. (4) is also satisfied by Jinel. On the other hand, the kinetic energy
is dissipated by collisions, so that one has

ζ ≡− m
3nT

∫
dvv2Jinel[v| f , f ]> 0 (10)

instead of Eq. (5). Equation (10) defines the so-called cooling rate ζ as a functional of f . Moreover, inelasticity
prevents the system from reaching an equilibrium state and so Eq. (6) is not fulfilled by Jinel. Instead, an undriven
homogeneous system freely cools down according to ∂tT = −ζhT , where ζh is the cooling rate corresponding to the
so-called homogeneous cooling state fh, which is a similarity solution of the Boltzmann equation depending on time
only through the temperature. As a consequence, the role of f0 is played by fh and Eq. (6) is replaced by [5]

Jinel[v| fh, fh] =
ζh

2
∂

∂v
· (v fh) . (11)

As in the elastic case, it is desirable to construct a kinetic model for granular gases by replacing the true operator
Jinel[v| f , f ] with a simpler term Kinel[v| f ]. Inspired by the BGK model (7) and by the properties (10) and (11), the
following kinetic model was proposed in Ref. [5]:

Jinel[v| f , f ]→ Kinel[v| f ] =−λ (α)ν [ f (v)− fh(v)]+
ζ
2

∂
∂v

· [V f (v)] , (12)

where fh is here the local form of the homogeneous cooling state solution, obtained from the latter by replacing v → V
and by replacing the temperature and density with their local values for the nonequilibrium state under consideration.
As also happened in the original BGK model (7), the modified collision frequency λν remains a free parameter. By
keeping ν as given by Eq. (7), the factor λ (α) can be chosen, for instance, to optimize agreement with the viscosity,
the thermal conductivity, or the self-diffusion coefficient for the Boltzmann equation [5, 6]. The latter criterion simply
yields λ (α) = (1+α)/2. The kinetic model (12) is still too complicated because it requires, on the one hand, the



solution of Eq. (11) and, on the other hand, the cooling rate as a functional of f through Eq. (10). In the spirit of a
simple kinetic model both conditions can be relaxed [5] by substituting in Eq. (12) the unknown local distribution
function fh with the local equilibrium distribution f0 and the detailed cooling rate ζ with its local equilibrium estimate
ζ → 5

12 (1−α2)ν .
While describing a granular gas, both the Boltzmann operator (8) and its associated BGK-like model (12) assume

that the inelastic hard spheres are smooth. However, there exist a number of relevant effects in granular gases where
roughness plays a crucial role [7, 8, 9]. The main purpose of this paper is to extend the BGK-like model (12) to the case
of inelastic rough hard spheres characterized, apart from α , by a coefficient of tangential restitution β . The situation
is now much more complex since, in addition to the translational degrees of freedom, there also exist rotational ones
[8, 9]. In fact, one can define two independent granular temperatures, T tr and T rot, and thus there are two associated
energy production rates, ξ tr and ξ rot, instead of a single cooling rate ζ . The proposed kinetic model will be further
simplified by focusing on the translational distribution function. This latter model will be applied and solved to the
steady simple or uniform shear flow.

THE BOLTZMANN EQUATION FOR INELASTIC ROUGH HARD SPHERES

Let us consider a granular gas made of inelastic rough hard spheres characterized by a constant coefficient of normal
restitution α and a constant coefficient of tangential restitution β . The coefficient α ranges from α = 0 (collisions
perfectly inelastic) to α = 1 (collisions perfectly elastic), while the coefficient β ranges from β =−1 (spheres perfectly
smooth) to β = 1 (spheres perfectly rough). Except if α = 1 and β = ±1, energy is dissipated upon collisions. The
one-particle distribution function f (r,v,ωωω; t) depends not only on the translational velocity v of the center of mass but
also on the angular velocity ωωω . In the dilute regime f obeys the Boltzmann equation

∂t f (r,v,ωωω; t)+v ·∇ f (r,v,ωωω; t) = Jrough[v,ωωω| f (r, ·, ·; t), f (r, ·, ·; t)], (13)

where the collision operator is

Jrough [v1,ωωω1| f , f ] = σ2
∫

dv2

∫
dωωω2

∫
dσ̂σσ Θ

(
g · σ̂σσ)(

g · σ̂σσ)[
(αβ )−2 f (v′′1 ,ωωω ′′

1) f (v′′2 ,ωωω ′′
2)− f (v1,ωωω1) f (v2,ωωω2)

]
.

(14)
The restituting collision rules are [8, 10]

v′′1 = v1 −C, v′′2 = v2 +C, ωωω ′′
1 = ωωω1 − 2

σκ
σ̂σσ ×C, ωωω ′′

2 = ωωω2 − 2
σκ

σ̂σσ ×C, (15)

where

κ ≡ 4I
mσ2 , C ≡ 1+α−1

2
(σ̂σσ ·g)σ̂σσ +

κ
1+κ

1+β−1

2

[
g− (σ̂σσ ·g)σ̂σσ − σ

2
σ̂σσ × (ωωω1 +ωωω2)

]
, (16)

I being the moment of inertia. The value of κ depends on the mass distribution within the sphere and runs from the
extreme values κ = 0 (mass concentrated on the center) to κ = 2

3 (mass concentrated on the surface); if the mass is
uniformly distributed, then κ = 2

5 . Mass and linear momentum are conserved by collisions, so one has
∫

dv
∫

dωωω Jrough[v,ωωω| f , f ] = 0,
∫

dv
∫

dωωω vJrough[v,ωωω| f , f ] = 0. (17)

On the other hand, except in the perfectly smooth case (β =−1), collisions tend to decrease the mean angular velocity
ΩΩΩ(r, t). This can be characterized by a “de-spinning” rate ζΩ defined by

∫
dv

∫
dωωω ωωωJrough[v,ωωω| f , f ] =−ζΩnΩΩΩ, ΩΩΩ =

1
n

∫
dv

∫
dωωω ωωω f (v,ωωω). (18)

In general, neither the translational nor the rotational kinetic energies are conserved by collisions. This can be
characterized by the partial energy production rates

ξ tr ≡− m
3nT tr

∫
dv

∫
dωωω v2Jrough[v,ωωω| f , f ], ξ rot ≡− I

3nT rot

∫
dv

∫
dωωω ω2Jrough[v,ωωω| f , f ]. (19)



Here, T tr = (m/3n)
∫

dv
∫

dωωω V 2 f (v,ωωω) and T rot = (I/3n)
∫

dv
∫

dωωω ω2 f (v,ωωω) are the translational and rotational
temperatures, respectively. In general, collisions produce a transfer of energy between the translational and rotational
degrees of freedom and, consequently, the energy production rates ξ tr and ξ rot do not have a definite sign. On the other
hand, unless α = 1 and β = ±1, the total energy (translational plus rotational) is dissipated and thus the net cooling
rate

ζ =
1

2T

(
T trξ tr +T rotξ rot) , T =

T rot +T tr

2
, (20)

is positive definite, where T is the total temperature.
Note that, instead of T rot, one could have alternatively adopted T rot

= (I/3n)
∫

dv
∫

dωωω (ωωω −ΩΩΩ)2 f (v,ωωω) =
T rot (1−X), with X ≡ κmσ2Ω2/12T rot, as the definition of the rotational temperature. Its associated production rate
is ξ

rot
= (ξ rot −2ζΩX)/(1−X). However, the disadvantage of this alternative choice is that, in contrast to ζ , the

“cooling” rate ζ = (ζ T −2ζΩX)/T associated with the alternative total temperature T = 1
2 (T

tr +T rot
) = T − 1

2 T rotX
is not positive definite and in fact becomes negative in the perfectly elastic and rough case (α = 1, β = 1).

Equations (18)–(20) define the de-spinning rate (ζΩ), the energy production rates (ξ tr, ξ rot), and the cooling rate (ζ )
as functionals of the velocity distribution function f . They can be estimated in terms of the local values of n, T tr, T rot,
and ΩΩΩ by the replacements

f (v,ωωω)→ f tr(v) f rot(ωωω), f tr(v)→ f tr
0 (v), (21)

where
f tr(v) =

∫
dωωω f (v,ωωω), f rot(ωωω) =

1
n

∫
dv f (v,ωωω) (22)

are marginal distribution functions and f tr
0 is given by Eq. (6) with T → T tr. The results are [8, 10]

ζΩ =
5
6

1+β
1+κ

ν , ν ≡ 16
5

σ2n
√

πT tr/m. (23)

ξ tr =
5
12

[
1−α2 +

κ
1+κ

(
1−β 2)+ κ

(1+κ)2 (1+β )2
(

1− T rot(1+X)

T tr

)]
ν, (24)

ξ rot =
5

12
1+β
1+κ

T tr

T rot

[
(1−β )

T rot(1+X)

T tr − κ
1+κ

(1+β )
(

1− T rot(1+X)

T tr

)]
ν , (25)

ζ =
5
12

T tr

T tr +T rot

[
1−α2 +

1−β 2

1+κ

(
κ +

T rot(1+X)

T tr

)]
ν . (26)

Before closing this section it is worthwhile noting that the vanishing of the second integral in (17) is not verified
in the case of the operator Jrough

12 [ f1, f2] describing the collisions of tagged particles (label 1) with untagged particles
(label 2). Under conditions milder than Eq. (21) one has [10]
∫

dv1

∫
dωωω1 v1Jrough

12 [v1,ωωω1| f1, f2]≈ λ (α,β )
∫

dv1

∫
dωωω1 v1Jel

12[v1,ωωω1| f1, f2], λ (α,β )≡ 1+α
2

+
κ

1+κ
1+β

2
.

(27)
According to Eq. (27), the average collisional transfer of momentum from component 2 to component 1 in the inelastic
rough case is λ (α,β ) times the value in the elastic smooth case. This property is relevant for self-diffusion problems.

KINETIC MODELING

Joint distribution function

As in the smooth-sphere case, both elastic [cf. Eq. (7)] and inelastic [cf. Eq. (12)], the idea behind a kinetic model
is the replacement of the complex Boltzmann collision operator Jrough[ f , f , ] by a much simpler term Krough[ f , f ] that
otherwise retains a number of basic physical conditions. As a natural extension of Eq. (12), the BGK-like model
proposed here for the joint distribution f is

Jrough[v,ωωω| f , f ]→ Krough[v,ωωω| f ] = −λ (α,β )ν
[

f (v,ωωω)− f tr
0 (v) f rot

0 (ωωω)
]
+

ξ tr

2
∂
∂v

· [V f (v,ωωω)]

+
1
2

∂
∂ωωω

·
{[

2ζΩΩΩΩ+ξ
rot
(ωωω −ΩΩΩ)

]
f (v,ωωω)

}
, (28)



where

f tr
0 (v)≡ n

( m
2πT tr

)3/2
exp

(
−mV 2

2T tr

)
, f rot

0 (ωωω)≡
(

I

2πT rot

)3/2

exp

[
− I (ωωω −ΩΩΩ)2

2T rot

]
(29)

are the local equilibrium distributions at independent temperatures. The second term on the right-hand side of Eq. (28)
can be interpreted as representing the action of an external drag force F =−m

2 ξ trV. Likewise, the third term represents

an external torque of the form M = − I
2

[
2ζΩΩΩΩ+ξ

rot
(ωωω −ΩΩΩ)

]
. By construction, the model (28) complies with the

exact properties (17)–(19), regardless of the choice of the effective collision frequency λν . Based on the property
(27), here the adopted choice for ν and λ is given by Eqs. (23) and (27), respectively. As for ζΩ, ξ tr, and ξ rot, they are
explicitly given by Eqs. (23)–(25).

Marginal distributions

The kinetic model (28) represents a significant simplification with respect to the original Boltzmann collision
operator (14). However, it is still too complicated a model if one wants to apply it to situations where the BGK-
like model (12) for inelastic smooth spheres allows for exact solutions [6, 11, 12]. In order to get explicit results that
might be useful to assess the influence of roughness on the basic physical properties, it seems desirable to use Eq. (28)
as the starting point for an even simpler kinetic model.

More explicitly, we consider now the kinetic equations for the marginal distributions defined by Eq. (22). When the
replacement (28) is inserted into Eq. (13) and integration over ωωω or over v are carried out, one obtains

∂t f tr(v)+v ·∇ f tr(v) =−λ (α,β )ν
[

f tr(v)− f tr
0 (v)

]
+

ξ tr

2
∂

∂v
· [V f tr(v)

]
, (30)

∂t f rot(ωωω)+u ·∇ f rot(ωωω) =−λ (α,β )ν
[

f rot(ωωω)− f rot
0 (ωωω)

]
+

1
2

∂
∂ωωω

·
{[

2ζΩΩΩΩ+ξ
rot
(ωωω −ΩΩΩ)

]
f rot(ωωω)

}
. (31)

Upon writing Eq. (31) we have taken into account that ∂tn+∇ · (nu) = 0 and have introduced the approximation
∫

dvv f (v,ωωω)→ nu f rot(ωωω). (32)

Thanks to this approximation, the kinetic model (28) for the joint distribution f yields the set of two coupled kinetic
equations (30) and (31).

Actually, the kinetic equation (30) for the translational distribution function f tr is coupled, via ξ tr, to the rotational
distribution f rot only through the first and second moments ΩΩΩ and T rot. Therefore, only the equations for these two
quantities are needed to close Eq. (30). From Eq. (31) one gets

∂tΩΩΩ+u ·∇ΩΩΩ =−ζΩΩΩΩ, ∂tT rot +u ·∇T rot =−ξ rotT rot. (33)

Equation (33) can alternatively be derived directly from Eq. (13) by applying the approximations
∫

dv
∫

dωωω vωωω f → nuΩΩΩ,
I
3

∫
dv

∫
dωωω vω2 f → nuT rot, (34)

which are weaker than Eq. (32).
The simple BGK-like model (30) is formally analogous to the one proposed in Ref. [5] for smooth spheres, Eq. (12).

The key difference is that the cooling rate ζ is replaced by the energy production rate ξ tr, which depends not only on
T tr but also on ΩΩΩ and T rot, the latter two quantities obeying Eq. (33). Despite its crudeness, this model can be useful
to explore the basic influence of roughness on the translational properties of a dilute granular gas.
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APPLICATION TO THE SIMPLE SHEAR FLOW

The simple (or uniform) shear flow is an incompressible flow defined by a linear velocity field u = ayx̂, a uniform
density, and a uniform temperature. This paradigmatic state is macroscopically quite simple since only a hydrodynamic
gradient exists (a = ∂ux/∂y) and moreover it is a constant. On the other hand, it is important to remark that the steady
state resulting from the balance between inelastic cooling and viscous heating is inherently non-Newtonian [13]. In
the steady state Eq. (30) becomes [6, 13]

−aVy
∂

∂Vx
f tr(V) =−λ (α ,β )ν

[
f tr(V)− f tr

0 (V)
]
+

ξ tr

2
∂

∂V
· [V f tr(V)

]
. (35)

Taking into account that ∂t + u ·∇ = 0 in the steady simple shear flow, Eq. (33) yields ΩΩΩ = 0, ξ rot = 0. The latter
condition determines the ratio between the rotational and translational temperatures from Eq. (25). Insertion of this
ratio into Eq. (24) gives ξ tr. The results are

T rot

T tr = κ
1+β

1−β +2κ
, ξ tr =

5
12

(
1−α2 +2κ

1−β 2

1−β +2κ

)
ν . (36)

Interestingly, the temperature ratio is independent of α . It ranges from T rot/T tr = 0 in the perfectly smooth case
(β =−1) to T rot/T tr = 1 in the perfectly rough case (β = 1). This temperature ratio is the same as in the homogeneous
steady state driven by a white-noise thermostat. Multiplying both sides of Eq. (35) by ViVj and integrating over velocity
one gets a set of algebraic coupled linear equations for the elements Pi j = m

∫
dVViVj f tr(V) of the pressure tensor.

The structure is the same as in the smooth case [6, 11] and so only the final results are quoted here:

T tr =
2ma2

3πλ 2(16σ2n/5)2
1

ξ̃ tr
(

1+ ξ̃ tr
)2 ,

Pxy

nT tr =−

√
3ξ̃ tr/2

1+ ξ̃ tr
,

T tr
y

T tr =
T tr

z

T tr =
1

1+ ξ̃ tr
,

T tr
x

T tr = 3−2
T tr

y

T tr , (37)

where ξ̃ tr ≡ ξ tr/λν is the scaled energy production rate and we have introduced the anisotropic temperatures T tr
i ≡

Pii/n, where Pii is the ith normal stress. The absolute maximum value of ξ̃ tr is 5
294

(
109−16

√
11
)
' 0.95 and

corresponds to α = 0, κ = 2
3 and β = 13− 4

√
11 ' −0.27. Elimination of ξ̃ tr between T tr

y /T tr and either a2/T tr

or Pxy/nT tr yields two nonequilibrium “equations of state” independent of α and β , namely

ã2 ≡
( a

λν

)2
=

3
2

(
T tr

T tr
y

)2(
T tr

T tr
y
−1

)
,

(
Pxy

nT tr

)2

=
3
2

T tr
y

T tr

(
1− T tr

y

T tr

)
. (38)

Figure 1 shows the dependence of the ratios −Pxy/nT tr and T tr
y /T tr on both coefficients of restitution α and β for the

case κ = 2
5 (uniform spherical mass distribution). The anisotropic effects induced by the shearing are measured by the

departure of Pxy/nT tr and T tr
y /T tr from 0 and 1, respectively. We can observe that, for a fixed value of β , those effects

increase monotonically with decreasing α . On the other hand, for a fixed value of α the influence of roughness is not
monotonic, the higher deviations from anisotropy taking place for central values of β . The dependence on β becomes
less important as the inelasticity increases. In the elastic case (α = 1) and β = ±1, Pxy/nT tr = 0 and T tr

y /T tr = 1, as
expected. The two universal equations of state are plotted in Fig. 2. Every triad (α ,β ,κ) is represented by one single
point in each graph and all the representative points lie on the curves given by Eq. (38). The end points of the curves
correspond to (α = 0,β '−0.27,κ = 2

3 ) and (α = 1,β =±1,κ = arbitrary).
A practical advantage of kinetic models is the possibility of obtaining explicitly the velocity distribution function.

Exploiting the analogy with the smooth case [6], the solution to Eq. (35) turns out to be

f tr(V) =
∫

dse−
(

1− 3
2 ξ̃ tr

)
s f tr

0

(
e

1
2 ξ̃ trs (V+ ãsVyx̂)

)
. (39)

This expression is formally analogous to that of an ordinary fluid with a Gaussian thermostat [3]. The marginal
distribution gtr(Vx,Vy) ≡

∫ ∞
−∞ dVz f tr(V) is also given by Eq. (39) except for the replacements 3

2 ξ̃ tr → ξ̃ tr, f tr
0 (V) →

gtr
0 (Vx,Vy)≡

∫ ∞
−∞ dVz f tr

0 (V). Figure 3 show the ratio R(Vx,Vy)≡ gtr(Vx,Vy)/gtr
0 (Vx,Vy) for inelastic smooth spheres with

α = 0.8 and for inelastic rough spheres with α = 0.8, β = 0.2, and κ = 2
5 . As can be observed, the distortion from the

local equilibrium distribution is higher in the latter case than in the former.



CONCLUDING REMARKS

In this paper a two-level BGK-like description for a dilute granular gas of inelastic rough hard spheres has been
proposed. At a more fundamental level, the one-body joint distribution function f (v,ωωω) is assumed to obey the kinetic
equation (13) with the replacement (28). The model preserves the Boltzmann collisional integrals (17)–(19) with the
de-spinning rate (ζΩ) and the partial energy production rates (ξ tr and ξ rot) given by Eqs. (23)–(25). At a simpler and
cruder level, the translational distribution function f tr(v) is assumed to obey Eq. (30), complemented by Eq. (33), while
the rotational distribution f rot(ωωω) satisfies Eq. (31). The second level prevents one from accounting for correlations
between the translational and rotational degrees of freedom [9]. On the other hand, the model kinetic equation (30)
can be useful to investigate the basic influence of roughness on the translational properties of the granular gas.

The kinetic model made of Eqs. (30) and (33) has been applied to the steady simple shear flow problem. The solution
predicts that the temperature ratio T rot/T tr is independent of the coefficient of normal restitution α and is given by
Eq. (36). On the other hand, according to Eq. (37), the reduced shear stress Pxy/nT tr, the reduced shear rate a/λν , and
the anisotropic temperature ratios T tr

x /T tr and T tr
y /T tr depend on α and β only through the reduced energy production

rate ξ̃ tr. It is observed that, at a given value of α , the dependence of those quantities on β is not monotonic, this effect
being less pronounced as inelasticity increases.

It is planned to carry out computer simulations to test the above theoretical predictions for the simple shear flow.
Moreover, the kinetic model (30) will be applied to other states that have been solved in the case of perfectly smooth
spheres, such as the Couette flow [12], the gravity-driven Poiseuille flow [14], and the uniform longitudinal flow [15].
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